Reg. No. : \square

Question Paper Code : 70763

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

First Semester
Mechanical Engineering
MA 6151 - MATHEMATICS - I

(Common to all branches except Marine Engineering)
(Regulations 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. If the eigenvalues of the matrix A of order 3×3 are 2,3 and 1 , then find the eigenvalues of adjoint of A.
2. If λ is the eigenvalue of the matrix A, then prove that λ^{2} is the eigenvalue of A^{2}.
3. Test the convergence of the series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots . . \infty$.
4. Examine the convergence of the sequence $u_{n}=2 n$.
5. What is circle of curvature?
6. Find the envelope of $x \cdot \cos \theta+y \cdot \sin \theta=1$, where θ is a parameter.
7. Find $\frac{d u}{d t}$ when $u=x^{2}+y^{2}, x=a t^{2}, y=2 a t$.
8. If $x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial(r, \theta)}{\partial(x, y)}$.
9. Find the area bounded by the lines $x=0, y=1$ and $y=x$.
10. Evaluate $\int_{0}^{\pi} \int_{0}^{a} r d r d \theta$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the eigenvalues and the eigenvectors of the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
(ii) Verify Cayley - Hamilton theorem for $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$. Hence, using it find A^{-1}.

Or
(b) Reduce the quadratic form $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$ into a canonical form by an orthogonal reduction. Hence, find its rank and nature.
12. (a) (i) Examine the convergence of the series $\frac{1}{2!}-\frac{2}{3!}+\frac{3}{4!} \ldots \infty$.
(ii) Find the sum to infinity of the series $\frac{1}{1!}+\frac{1+5}{2!}+\frac{1+5+5^{2}}{3!}+\ldots . \infty$.

Or
(b) (i) Expand $\frac{1}{(1-2 x)^{2}(1-3 x)}$ in ascending powers of x. Also find the coefficient of x^{n}.
(ii) Prove that $\sqrt{x^{2}+4}-\sqrt{x^{2}+1}=1-\frac{x^{2}}{4}+\frac{7}{64} x^{4}$ nearly when x is small.
13. (a) (i) Find the radius of curvature of the cycloid $x=\alpha(\theta+\sin \theta)$,

$$
\begin{equation*}
y=\alpha(1-\cos \theta) . \tag{8}
\end{equation*}
$$

(ii) Find the equation of the evolutes of the parabola $y^{2}=4 a x$.

Or

(b) (i) Find the equation of circle of curvature at $\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
(ii) Find the envelope of the family of straight lines $y=m x-2 a m-a m^{3}$, where m is the parameter.
14. (a) (i) If $u=\log (\tan x+\tan y+\tan z)$, find $\sum \sin 2 x \cdot \frac{\partial u}{\partial x}$.
(ii) Obtain the Taylor series of $x^{3}+y^{3}+x y^{2}$ in powers of $x-1$ and $y-2$.

Or
(b) (i) Find the Jacobian of $u=x+y+z, v=x y+y z+z x, w=x^{2}+y^{2}+z^{2}$.
(ii) Obtain the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
15. (a) (i) Change the order of integration and hence evaluate it $\int_{0}^{4 a} \int_{\frac{x^{2}}{4 a}}^{2 \sqrt{a x}} x y d y d x$.
(ii) Evaluate: $\iint_{0}^{a} \int_{0}^{b}\left(x^{3}+y^{2}+z^{2}\right) d x d y d z$.

Or
(b) (i) Evaluate $\iint(x-y) d x d y$ over the region between the line $y=x$ and the parabola $y=x^{2}$.
(ii) Find the value of $\iiint x y z d x d y d z$ through the positive spherical octant for which $x^{2}+y^{2}+z^{2} \leq a^{2}$.

