Reg. No. :

Question Paper Code : 70763

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

First Semester

Mechanical Engineering

MA 6151 - MATHEMATICS - I

(Common to all branches except Marine Engineering)

(Regulations 2013)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. If the eigenvalues of the matrix A of order 3×3 are 2,3 and 1, then find the eigenvalues of adjoint of A.
- 2. If λ is the eigenvalue of the matrix A, then prove that λ^2 is the eigenvalue of A^2 .

3. Test the convergence of the series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots \infty$.

- 4. Examine the convergence of the sequence $u_n = 2n$.
- 5. What is circle of curvature?
- 6. Find the envelope of $x \cdot \cos \theta + y \cdot \sin \theta = 1$, where θ is a parameter.
- 7. Find $\frac{du}{dt}$ when $u = x^2 + y^2$, $x = at^2$, y = 2at.

8. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, find $\frac{\partial(r, \theta)}{\partial(x, y)}$

9. Find the area bounded by the lines x = 0, y = 1 and y = x.

10. Evaluate
$$\int_{0}^{\pi} \int_{0}^{a} r dr d\theta$$
.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Find the eigenvalues and the eigenvectors of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. (8)

(ii) Verify Cayley – Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$. Hence, using it find A^{-1} . (8)

Or

(b) Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4xz$ into a canonical form by an orthogonal reduction. Hence, find its rank and nature. (16)

12. (a) (i) Examine the convergence of the series
$$\frac{1}{2!} - \frac{2}{3!} + \frac{3}{4!} \dots \infty$$
. (8)

(ii) Find the sum to infinity of the series
$$\frac{1}{1!} + \frac{1+5}{2!} + \frac{1+5+5^2}{3!} + \dots \infty$$
. (8)

Or

(b) (i) Expand $\frac{1}{(1-2x)^2(1-3x)}$ in ascending powers of x. Also find the coefficient of x^n . (8)

(ii) Prove that
$$\sqrt{x^2 + 4} - \sqrt{x^2 + 1} = 1 - \frac{x^2}{4} + \frac{7}{64}x^4$$
 nearly when x is small.
(8)

13. (a) (i) Find the radius of curvature of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$. (8)

(ii) Find the equation of the evolutes of the parabola $y^2 = 4ax$. (8)

2

70763

(b) (i) Find the equation of circle of curvature at
$$\left(\frac{a}{4}, \frac{a}{4}\right)$$
 on $\sqrt{x} + \sqrt{y} = \sqrt{a}$.
(8)

(ii) Find the envelope of the family of straight lines $y = mx - 2am - am^3$, where *m* is the parameter. (8)

14. (a) (i) If
$$u = \log(\tan x + \tan y + \tan z)$$
, find $\sum \sin 2x \cdot \frac{\partial u}{\partial x}$. (8)

(ii) Obtain the Taylor series of $x^3 + y^3 + xy^2$ in powers of x-1 and y-2. (8)

Or

(b) (i) Find the Jacobian of
$$u = x + y + z$$
, $v = xy + yz + zx$, $w = x^2 + y^2 + z^2$.
(8)

(ii) Obtain the volume of the largest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. (8)

15. (a) (i) Change the order of integration and hence evaluate it
$$\int_{0}^{4a} \int_{\frac{x^{2}}{4a}}^{2\sqrt{ax}} xy \, dy \, dx \,. \tag{8}$$

(ii) Evaluate:
$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} (x^{3} + y^{2} + z^{2}) dx dy dz.$$
 (8)

Or

- (b) (i) Evaluate $\iint (x y) dx dy$ over the region between the line y = x and the parabola $y = x^2$. (8)
 - (ii) Find the value of $\iiint xyz \, dx \, dy \, dz$ through the positive spherical octant for which $x^2 + y^2 + z^2 \le a^2$. (8)